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PREFACE

This study analyzes a proposed passive attitude~stabilization
concept for artificial satellites. The analysis was carried out at
the request of Mr. A. M. Andrus, Office of Space Sciences and Ap-
plications, National Aeronautics and Space Administration, as part

of RAND's work for NASA on communication satellite technology.



SUMMARY

For some applications, artifical earth satellites must be stabilized
in attitude with respect to the earth or some other reference. The
attitude requirements for certain missions are more severe than for
others. For example, a communication satellite, which is simply re-
quired to floodlight the earth, might function quite well without re-
gard to vhether it were oriented frontward or backward, while an ob-
servation satellite with very directional sensors may require excep-
tional attitude accuracy.

It is possible to design a satellite so that gravity alone will
keep it approximately stabilized. The resulting stabilization is not
as precise as may be possible with an active system, and so may be
valuable for applications in which the satellite must be stabilized,
but not necessarily with great precision. Such a passive system should
function as long as the satellite stays in orbit.

The present study analyzes a gravity-stabilized satellite, pro-
posed by workers at the Ames Research Center. This concept has been
previously analyzed on an approximste, or linear, basis. The present
analysis 1s nonlinear, and hence more complicated, but should also
yield more general results.

The analysis takes into account deviations from the desired at-
titude due to initial errors, due to deviations of the satellite from
a circular orbit, and due to external forces such as radiation pres-
sure. The particular stabilization concept under consideration gives
excellent performance in making corrections for initial attitude errors.

However, some subsequently applied forces, such as those resulting
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if the orbit had to be corrected by a thrust impulse, might unduly
perturb the satellite's attitude, so that stabilization could not be
maintained. This could be alleviated at the expense of some degra-

dation in transient response by an appropriate small design change.
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Coordinate Systems (See Figs. 1-3)
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Earth-centered inertial axes.
Earth-centered axes.

Local horizontal axes.
Principal axes of primary body.
Principal axes of damper-rod.

Principal axes of damper-rod, body combination.

Orbital Parsmeters (See Fig. 1 and Appendix B)

ry 8, v

Spherical coordinates used to specify the position of
the center of mass of the satellite with respect to the
nominal orbit plane.

Angle between X and XI
Inclination of the nominal orbit plane.

Orbit eccentricity.

Orientation Angles (See Figs. 2-3)

a, B, o

@ Bys @y

% Fpr B

P1s Pp

Orientation angles relating the body x, y, z axes to the
i, j, k axes. For small angles @ is the pitch angle, B
is the roll angle and Agp is the yaw angle.

Angles relating the damper-rod axes, X9 ¥yr Zq to the
i, j, k axes.

Angles relating the xp, yp, zp axes to the i, J, k axes.

Angles relating the damper-rod to the body.
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Xiv

The x, y, 2z components of the angular rate of the
body with respect to inertial space.

The xp, yp, zp components of the angular rate of the

damper-rod,body combination with respect to inertial
space.

Moments qf Inertia

Lo I, 1,
ar L T

I ,I,1T

xp°  yp® Zp

The principal moments of inertia of the body alone
(i.e., without demper-rod).

The principal moments of inertia of the damper-rod.
In this study le = 0 and Iyl = Izl = Idr'

The instantaneous principal moments of inertia of the
damper-rod, body combination. For small disturbances
they are approximately constant.

Miscellaneous Quantities

8.

(*)

Constant orbital angular rate for an ideal circular
orbit.

Orbital radius of ideal circular orbit.

Acceleration of gravity at the surface of a spherical
earth.

The limit value of Py

Time derivative of a quantity.
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I. INTRODUCTION

The passive attitude stabilization of satellites by means of
gravitational gradient torques has been under study for at least the
last 10 yea.rs.(l) Such an approach is attractive, since under ideal-
ized conditions, a satellite will maintain a particular orientation
with respect to the local vertical without the expenditure of energr.*
However, even in the absence of external disturbing torques, the satel-
lite can tumble or oscillate continuously due to initial errors in body
attitude angles and angular rates, orbital eccentricity, or perturbations
due to the higher-order harmonics in the earth's potential function.
Thus for any practical application some sort of demping mechanism must
be employed so that the oscillations due to initial errors will decay
with time.

A mumber of ingenious schemes have been pmposed.(a-u)

If pre-
cise attitude control is required, active systems employing reaction
wheels or gyros in conjunction with a sensor such as an horizon scan-~

(5)

ner are utilized. However, if extreme pointing accuracy is not a
requirement, then passive demping techniques can be employed. The
term "passive" implies that the damping system does not require a power
supply.

The passive stabilization concept under consideration in this
Memorandum is directly related to the Vertistat as proposed by Icmmn.(G)
Since a mumber of stabilization schemes employing the principles of

the Vertistat have been proposed, a discussion of the basic features

*The local vertical is assumed to be the direction of the maximum
of the gravitational gradient.
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of this concept is of value.”'lo)

In order to achieve three-axis stabilization, the moments of in-
ertia of a vehicle must have a certain order insofar as their magni-
tudes are ooncerned.(u) Tius the largest moment of inertia must
correspond to the pitch axis, which is ideally normal to the orbital
plane. The yaw axis, ideally aligned with the vertical, is the axis
of minimm moment of inertia. The roll axis, of intermediate moment

of inertia, is colinear with the vehicle's velocity vector.

Velocity vector

Yaw oxis

Roll axis

Pitch axis

Local vertical

Earth

A satellite is not always constructed with the proper mass dis-
tribution for the required order of the moments of inertia.
This difficulty is circumvented in the Vertistat by utilizing rods or
booms that can be stored compactly and then extended once the vehicle
is in orbit.(le) For a nominal weight penalty the moment of inertia
about a given axis, and thus the gradient torque, can be greatly en-
hanced.

Two bodies with differing pitch moments of inertia will have
different periods of oscillation sbout the pitch axis. Thus if two

such bodies are coupled together by means of a dissipative mechanism,
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their relative angular velocity will be damped until, in the absence
of external disturbances, both bodies no longer oscillate with re-
spect to each other or to the local vertical. For small displace=-
ments from a stable orientation the pitch motion is independent of
the coupled roll-yaw motion. Thus Kammn suggested that one boom be
viscously coupled to the main body so that its equilibrium position
would be along the roll axis. Since this is an attitude of unstable
equilibrium, due to the gradient torgques, a spring must be used to
maintain the desired body-boom angular relationship. Another boom
is viscously coupled to the body so that it is nominally along the
pitch axis. Again a spring is required to keep the boom in the hor-

izontal plane under equilibrium conditions. (See the following sketch.)

/waonw

Damper booms

Roll axis

Pitch axis

Local vertical

Earth
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The lengths of the booms along the yaw, pitch and roll axes are chosen
so that the magnitude of the moments of inertia have the required or-
der. In addition, the booms along the roll and pitch axes are viscously
spring coupled to the body so that disturbances will cause relative
motion and will thus dissipate energy.

The specific concept considered in this Memorandum is due to
Bruce E. Tinling and Vernon K. Merrick(8) of the Ames Research Center,
Moffett Field, California.* It is a variation of the Vertistat, em-

Ploying only one damping rod or boom which moves relative to the body.

/ Yaw axis

Body

Velocity vector

/ Damper boom

Roll axis
Pitch axis

Local vertical

Earth

The mass distribution of the damper-rod, combined with the mass dis-
tribution of the fixed rods and the body, is such that the principal

axes are along the pitch, yaw and roll axes as shown in the sketch.

*A similar approach has been analysed in umpublished work by the
General Electric Company, Valley Forge, Pennsylvania.
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Thus the damper-rod, under equilibrium conditions, lies in the hor-
izontel plene at an angle with respect to the orbital plane. Due to
the gyroscopic temms in the rotational equations of motion, the pitch,
roll and yaw equations are coupled even for small oscillations. As

a consequence, damping the relative angular rate between the damper-
rod and the body also damps the pitch, roll and yaw modes. (See Ap-
pendix A.)

The system parameters which are utilized in this study have been
selected on the basis of a linearized analysis of the rotational eque~
tions of motion. (8) The purpose of this study is to examine the ro-
tational motion of a satellite which uses the Ames damping scheme

when the complete nonlinear equations of motion are considered.
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II. BASIC ASSUMPTIONS AND DEFINITIONS

The primary force acting on the center-of-mass of the satellite
is derived from an inverse-square gravitational field. All other
forces are either neglected, or else they are treated as small per-
turbations. Thus, for example, the influence of the earth's oblate-
ness upon the center-of-mass motion can be included, approximately,
if desired. Those force terms which arise as functions of body at-
titude about the center-of-mass are neglected.(l3’lh)

The primary external moments-of-force, or torques, which act
about the body center-of-mass are those due to the gradient of the
inverse-square gravitational field. Provision is also made for the
inclusion of external disturbing torques of arbitrary magnitude and
frequency. Gradient torques due to the higher-order hamonics of the
earth's gravitationsl field and those due to gravitational fields
external to the earth are neglected.

The coordinate systems which are used to describe the orbital
motion of the vehicle are shown in Fig. 1.

A set of inertial axes, XI, YI’ ZI’ are located at the center of
the earth. The nominal orbital plane is fixed with respect to the X Y
Z coordinates and inclined at an angle io with respect to the X Y plane.
If the earth's oblateness is included as an orbital disturbance, the X
Y Z axes rotate about ZI through ¥, the regression angle. The spher-
ical coordinates r, @, and y serve to establish the location of the

center-of-mass of the vehicle with respect to the nominal orbital plane.




2,2
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X 4
Xq

Equatorial plane

Fig. 1—Inertial and orbital coordinates

Another set of axes, i j k, located at the center-of-mass, are
used in relating the attitude of the body to the gravitational field.
The i axis is along r, the k axis is parallel to the nominal orbital
plane and perpendicular to r, while j is perpendicular to i and k,
foming a right-handed system. This set of axes will be called the
local horizontal axis system, although this is strictly true only for
a spherical earth. Figure 2 shows the relationship between the satel-

lite and the local horizontal axes.



Fig. 2—Relationship between local horizontal axes
and body principal axes

The x y z set of coordinates are the central principal axes of the
body. In Fig. 2, @ is a positive rotation about j (pitch), B is a
positive rotation sbout the intermediate z axis (roll), and ¢ is a
positive rotation aebout the x axis (yaw).

To introduce damping, another body called the damper-rod, is
coupled with the primary body or satellite so that their relative
motion dissipates energy. By making the centers-of-mass of the two
bodies coincident, only one set of translational equations is required.
Thus the coordinate systems and perameters defined in Fig. 1 pertain

to both bodies.
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Figure 3 shows the relationship of the damper-rod with respect

to the vehicle's central principal axes.

Fig. 3— Damper -rod, body axes geometry

( In Fig. 3, the central principal axes of the damper-rod are designated
by the subscript 1. The damper-rod has one rotational degree-of-free-
dom, Pys with respect to the primary body, and the axis of rotation,
¥y0 is constrained to remain at an angle, Py in the y z plene.

In order to specify the attitude of the damper-rod with respect
to the local horizontal coordinates, a set of angles, a5 Bl, ® s

analogous to o, B, ¢ shown in Fig. 2, are introduced.

| It is convenient to define another set of principal axes, xp ’ yp
| and zp. These are the instantaneous central principal axes of the body
and deamper-rod combined. Under ideal equilibrium conditions, xp is

along i, yp is along j and zp is along k.
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III. COMPUTATIONAL RESULTS

Under ideal equilibrium conditions, the damper-rod would lie in the
y z plane of the body, which in turn is coincident with the local-hor-
izontal plane.* (See Figs. 2,3.) Due to the gyroscopic torques which
act on the rod and, in turn, are applied to the body, the y axis is
displaced from j by a steady-state angle, I Since dynamically there
is no distinction between x along i or minus i or between y along j or
minus j, there are four orientations of the satellite which are nom-
inally steble. The values of L and the other orientation angles for
which stable motion is possible are dependent on the specific design.
Table 1 lists the various damper-rod, body parameters which have been

utilized in this study. (See Appendix A.)

Table 1

DESIGK PARAMETERS

Inertia Ratios Damper-rod Parameters

(1, /1) =112 (c; /T,) =1.545x 1073 rad/sec
(Ix /1,) =o0.12 (c2 /Idr) = 4,538 x 10'6 (ra.d/sec)2
(Idr /Ix) = 0.666 p; = 1.0929 rad

(T4, /IZ) = 0.08

Also it is assumed that the magnitude of P is physically limited to
some maximum value, IpLI. See Fig. 3 and Appendix A.

For the conditions of Table 1, the four stable orientations are:

*]deal conditions imply a circular orbit and no external disturb-
ing forces or torques.
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0.3622 or 5.921 rad

[
St
Q
H
™
1]
Lo}
n
|
o
.s
S
4]
1/]
"
]

2) a =B, =0,=0; @ == 3.538 or 2.779% rad

3) a =+nrad; B _=p,=0; o = 0.3622 or - 5.921 rad
)-l-) ass=iﬂrad; ﬁSs‘:pa‘O; st=3.5038 or_2.779)+rad

In Case 1, the vehicle is right side up and by definition oriented
properly. Case 2 represents a vehicle right side up but moving back-
wards. Cases 3 and 4 correspond to 1 and 2 respectively except that
the vehicle is upside down.

As a matter of convenience Case 1 has been selected as the standard
vehicle orientation, and thus represents perfect three-axis attitude

control. For these ideal conditions, the body angular rates are

we =0
wy =6, 08 95
w, == 8, 5in @

where éc is the constant orbital angular rate.

The design parameters, ¢y C etc., have been chosen such that

2’
the time required to damp small disturbances is the same about each
axis. The purpose of this study is to examine the response of the
design to large initial disturbances, and to determine the steady-

state angular motion under external forcing. (See Figs. 4-32, Appendix E.)

INITIAL ANGLE ERRORS

An obvious type of initial condition error that might occur is
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for a(0), B(0) and ¢(0) to be, singly or in combination, different from
the required steady-state values. For small initial attitude errors
the linearized and nonlinear results are in good agreanent.* (See

Fig. 4.) When large angle errors are considered, the nonlinear re-
sponse deviates from the linear results. Of course, if limiting occurs
the difference between the two solutions can be very great. (See Figs.
556.)

The response due to initial angle errors damps to essentially zero
in three to five orbits if limiting does not occur. This is true for
errors as large as 45°. (see Fig. 7.) When limiting is involved the
time to damp is dependent on the specific initial angle errors present.
(See Figs. 8 and 9.) For p, + 30° limiting occurs for initial error
angles of 20° or greater.

Another point that should be noted from Figs. 8 and 9 is that it
is very possible for the vehicle to stabilize in a backward position.
Whether or not this is of importance depends upon the particular mis-
sion.

In any case if the limiting value of p, is & 30° or greater, the
time to damp the response due to initial angle errors is from three to

s8ix orbitals periods.

INTTTAL ANGULAR RATE ERRORS

There will almost certainly be angular rate errors at the in-

itiation of the stabilization process. The manner in which the angular

rate error is distributed between xp yp and zp depends to a great extent

*The linear solutions were supplied by B. E. Tinling, Ames Re-
search Center, private communication.
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on the details of the orbital injection procedure.

If the final-stage vehicle is spin-stabilized, then a residual
value of mxp(o) can be expected. At the seame time the xpaxis is in-
ertially stable so that, ideally, myp(o) and mzp(o) are zero. Figure
10 shows the attitude response of the vehicle as a function of time
vhen the only initial error is mxp(o). Again with the exception of the
yaw motion, the disturbances are well damped within three to five orbits.
Initial errors in pitch attitude in conjunctien with mxp(o) do not sub-
stantially alter the time to damp. (See Figs. 11-12.)

Another case of interest is if the vehicle has a residual angular
rate error about an axis perpendicular to the orbital pla.ne.* Due to
the gradient restoring torques the body will rotate with respect to the
local vertical only if the initial pitch angular rate exceeds a certain
value. (See Appendix C.) For positive pitch rates this value is
approximately 2.75 &, , vhere éc is the orbital angular rate. For
negative pitch rates the minimm value is approximately - 0.75 éc.

Thus for the range of pitch rates less than 2.75 éc and greater than

- 0.75 éc the vehicle will oscillate and not rotate with respect to the
local vertical. Under these conditions the oscillations of the vehicle
damp in about five orbits. {(See Figs. 13-14.) When the pitch rate is
increased (or decreased) until tumbling occurs, the time required to
damp the motion changes markedly. For example, if the pitch angular
rate is increased from 2.5 éc to 3 éc the time to damp increases from
about five orbital periods to approximately 15 orbital periods. (See

Fig. 15.)

*This axis is the nominal pitch axis, y , of the damper-rod, body
combination. 4
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For the first ten orbits the body rotates with respect to the local
vertical and then begins to oscillate. This behavior can be explained
as follows: With the vehicle rotating about the pitch axis the gra-
dient torque acting on the damper-rod tends to be averaged to zero.
Thus, after the transient phase, Py is small in amplitude and the re-
moval of energy is slow. Limiting has very little influence on the
damping time, as can be seen from Fig. 16, which is a repeat of the pre-
vious case, but without limits. The same sort of behavior occurs for neg-
ative pitch rates. (See Fig. 17.) In this case even the transient
motion of the dsmper-rod is small, so that the damping rate is very
slow. The vehicle does not stop tumbling until approximately 30 or-
bital periods have elapsed!

If the initial value of the pitch anguler rate is increased to
¥ o » the mmber of orbits that are completed before tumbling stops is
2k, when there sre mo limits on p,. If p, is limited to & 30° the
tumbling stops in approximately 34 orbits! The reason for this be-
havior is that as the initial pitch rate increases, another mode of
» motion is possible if there is a limit imposed upon the magnitude of
Pye The damper-rod, during the initial transient response, moves to
the limit and subsequently does not depart very far from that limit.
As & consequence there is very little relative motion and the damper-
rod and body tend to rotate as a single unit. (See Appendix C.) As
is indicated in Appendix C, the rod is held on the limit by the gyro-
scopic torque term in the equations of motion of the damper-rod. The
same type of behavior as described above occurs if the initial pitch

ra-te iS had u‘éco
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The initial pitch rate required for continuous limiting is a func-
tion of the remaining initial conditions. If the damper-rod starts on
a limit of + 30° » the analysis of Appendix C indicates that an initial
pitch rate of approximately +i.1 éc rad/sec or -6.0 éc red/sec is suf-
ficient to maintain contimuous limiting. (See Figs. 18-19.) Of course
Py would usually be zero, initially, rather than + 30°. A mumber of
runs have been made in the investigation of the conditions for contin-
uwous limiting. A typical result is a case in which the pitch rate is
initially 5§ _ red/sec, all other conditions being standard. After 55
orbits the vehicle still tumbles and the damper-rod pructically never
leaves the limit.

The analysis of Appendix C indicates that, when the damper-rod is
initially on the limit, there is a value of |p |, between 0° and 90°,
for which the required initial pitch rate for continuwous limiting is a
minimum. As |pL| approaches either 0° or 90° the required initial pitch

rate for continuous limiting spproaches infinity.

FORCING DUE TO ORBITAL MOTION

Under idealized conditions the vehicle's center-of-mass is on a
circular orbit about an earth which has an inverse-square gravitational
field. In practice, the orbit is apt to be somewhat eccentric, and the
earth's field is only approximately inverse-square in nature.

The magnitude of the orbital eccentricity is dependent upon the
guidance accuracy associated with orbit injection. Since guidance
accuracy is a function of the particular system involved, eccentricities
of from 0.01 to 0.1 have been arbitrarily chosen for this study. Figures

20-21 show typical examples of the forced responses due to eccentricity.
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One of the interesting features of Figs. 20-21 is the amplitude
of the yaw response. It is obvious that the yaw mode is particularly
susceptible to disturbances at orbital frequency.

Over the range of values, 0.0l to 0.07, the amplitudes of the var-
ious steady-state responses vary linearly with eccentricity.

The obleteness of the earth causes by far the most important de-
viation from an inverse-square gravitational field. Insofar as body
attitude is concerned, the major influence of oblateness is the forcing
due to the regression of the orbital plane. (See Appendix B.) Figures
22-23 show the influence of oblateness with and without eccentricity.

A comparison of Figs. 20 and 23 gives an indication of the small effect of
oblateness. Furthermore, the runs that are presented in Figs. 20 and 23
are for an orbit altitude of 625 miles. Since, relative to the inverse-
square force, the megnitude of the oblateness term diminishes by the ad-

ditional factor, (rE/rc)g, its effect is quite negligible for higher orbits.

FORCING DUE TO EXTERNAL DISTURBING TORQUES

Up to this point the vehicle attitude response to the various
disturbances considered has been independent of the orbital altitude.*
Thus Figs. 4-21 are valid for a given vehicle for near-earth to syn-
chronous orbits with only the time per orbit varying. However, when
disturbances external to the satellite and its motion are considered,
the relative magnitudes of the gradient-restoring torques and other

sources of torque must be compared on an absolute basis.

*The one exception is the earth's oblateness which has decreasing
influence with increasing altitude.
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As an indication of the variation in the magnitude of the gradient
torques let us examine the influence of the following constant disturb-
ing torque:

MD = Iyp x 10 7
vhere I P is the principal moment-of-inertia about the pitch axis of the
damper-rod, body combination. Such a disturbance torque produces a
steady-state error in pitch of approximately 2.6°, if the orbit alti-
tude is 625 miles. (See Fig. 24.) The same vehicle subjected to the same
torque at synchronous altitude would tumble about the pitch axis! To
achieve the same error angle at synchronous altitude would require I vp

*
to be increased as follows:

(éi)ref.
(Iyp)sync. = (é2) (Iyp)ref. = lgo(IYp)ref.
¢’sync.

Thus for Fig. 24 to be valid for synchronous orbits, the pitch moment
of inertia must be 190 (Iyp)re .. where the subscript ref. refers to the
625 mile reference orbit.

To be specific, let us consider the disturbance to be a force equal
to 10—6 1b displaced from the center~of-mass by a distance of 1 ft.
Thus for reference conditions Iyp is 10 slug-ft2 and for synchronous
orbits Iyp is 1900 slug-ft2. All of the other inertias would scale
according to the ratios of Table 1, where I y'p/Iz equals 1.15. Figures
25 and 26 show the attitude response when a disturbance torque of 10'6
1b-ft is applied first to the yaw axis of the vehicle, and then to the

roll axis. An examination of Fig. 25 indicates that the satellite is

*'I; and Izp must be scaled in the same manner.
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unstable in yaw, although the pitch and roll errors are reasonably
small. Figure 26 shows that the steady-state responses to a constant
roll torque of 10-6 1b-ft are small in amplitude, again with the ex-
ception of the yaw mode.

If the constant yaw-disturbing torque is reduced in magnitude

from 10'6

%o 1077 1b-ft, the steady-state yaw angle response is ap~
proximately 0.1 radian. For pitch and roll disturbance torques, re-
spectively, of 10'7 1b-ft, the steady-state pitch and roll responses
are about 0.1 of those of Figs. 24 and 26.

Identical results to those of the preceding paragrsph can be ob-
tained with & 10°° 1b-ft disturbsnce if all of moments-of-inertia are
increased by a factor of 10. Thus for synchronous orbits, pr, Iy'p
and I, must be increased to 3,300, 19,000 and 17,330 slug-ft, re-
spectively.

Figures 27-29 show the vehicle attitude response for sinusoidal
disturbances at orbital frequency about the pitch, yaw and roll axes,
respectively. Figures 30-32 repeat Figs. 27-29 bvut at a frequency

equal to twice orbital rate.
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IV. CONCLUSIONS AND DISCUSSION

In the previous section, a representative selection of the digital
computer results obtained to date has been presented. A large mumber of
other cases has been investigated, including many different combinations
of the various initial errors a.nd/or disturbances. The conclusions drawn
from all of the data concerning this specific passive stabilization con-
cept can be summarized as follows:

1) The transient responses due to initial angle errors, singly or
in combination, are rapidly damped, with three to five orbital
periods being typical of the time required. (See Figs. 4,8,9.)

2) The transient responses due to initial angular rate errors are
rapidly demped if the vehicle oscillates but does not rotate
with respect to the local horizontal coordinates. Large yaw
angular rates, e.g., five times orbital rate, will damp within
five to six orbital periods, but comparable pitch angular rate
errors may take 10 times as long to damp. (See Figs. 10,13,17.)

3) The magnitude of the responses due to orbital motion is a func-
tion of the eccentricity. The steady-state amplitude of the yaw
response, which is the largest, is approximately te radians.
(See Figs. 20-21.) The forcing due to orbital regression is
negligible.

L) With respect to external disturbances the pitch and roll re-
sponse have approximately the same steady-state magnitude for
a given constant pitch or rll torque. The yaw response, how-
ever, is approximately 30 times larger for the same constant
disturbance. The yaw mode is sensitive to sinmusoidal disturb-
ances at orbital frequency, while the roll mode is sensitive to
sinusoidal disturbances at twice orbital frequency. (See Figs.
2k-32.)

The basis on which the parameters of Table 1 were chosen was es-
sentially an optimization of the transient response.(a) The time to demp
wvas made as small as possible, and equal for the pitch, yaw and roll
modes. (See Fig. 4.) Although the analytic approach of Merrick and
Tinling was restricted to small angle and angular rate errors the re-

sults of the present study indicate that excellent transient responses can




-20-

be expected for large error angles and for relatively large initial
rate errors.

It is doubtful that contimuous limiting weuld be a real operational
problem. To begin with it should not be too difficult to keep the pitch
component of angular rate within +1l-éc to -6éc . For pitch rates within
this range, contimious limiting is not possible although the time to
demp might be as long as 30 orbital periods. (See Fig. 17.) Also the
limiting angle of % 30° » which was a condition for most of the machine
runs, could probably be increased to at least + 60° if necessary.*

One particular aspect of the transient response to large initial
errors is that the vehicle can become stabilized in a backward or up-
side down position or both. The importance of the final attitude of
the satellite depends to a great extent upon its particular mission.
Thus, for a communication satellite, being backwards may be unimpor-
tant but being upside down could be disastrous. 1In the final analysis,
considerations of this sort will determine the permissible limits on
the initial attitude and attitude rate errors and thus the required
sophistication of the orbit injection procedure.

The forced response due to orbital motion is small if the ec-
centricity is smell. Thus for an e of 0.005, the steady-state yaw,
pitch and roll amplitudes are 0.02, 0.0l and 0.002 radisns, respectively.
Unless very precise attitude control is required, the range of accept-

able eccentricities is compatible with current injection guidance

*It 15 possible that soft limits, utilizing a nonlinear spring,
might change the situation. This has been suggested in private con-
versations with D. Watsen of Ames Research Center and R. Moyer of Gemeral
Electric, Valley Forge, Pennsylvania.
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capabilities.

When the influence of external disturbing torques is examined,
the importance of the specific design and mission becomes evident.

The following list is representative of the possible disturbing torques
that can influence vehicle angular motion.

* Residual aerodynamic forces

e Magnetic and electric fields

o« Solar radiation effects

+ Micro-meteorite impact

- Uncompensated motion of intermal mass

 Thrust line, center-of-mass deviations
Obviously the degree of importance of any one of the disturbance sources
depends to a great extent on a specific vehicle design and the intended
mission. Thus, aerodynamic effects would be of interest for only very
low altitude orbits. Solar radiation pressure effects, on the other
hand, become relatively more important at high orbit altitudes, since
for a given vehicle the gradient-restoring torques decrease with in-
creasing altitude.

As a concrete example, let us consider the stabilization require-
ments for a passive communication satellite operating in a 6000 mile
orbit. If station keeping is not utilized, the requirements could
readily be met by the Ames design concept. The transient response is
more than adequate and the only problem that remains is to choose the
moments of inertia so that the response to externmal disturbances is
acceptable.

Of the possible external disturbances, solar radiation pressure

effects would probably have the greatest potential for perturbing the




satellite. Since the yaw degree of freedom is the most sensitive to
constant disturbing torques, overall performance will be adequate if
the magnitudes of the moments of inertia are chosen to achieve a pre-
scribed steady-state yaw response to the maximum yaw disturbance torque
that could bve expected.

In order to mzke this calculation, it is necessary to assume a
configuration and certain physical properties for the satellite. (See
Appendix D.) The main body of the satellite is an "X" formed by two rods
with tip to tip lengths, L. The included angle has been selected to
achieve the body inertia ratios of Table 1, p. 1O.

Table 2 shows the yaw disturbance torques for various ratios of
the yaw error to Ad (where Ad is the displacement of the center-of-pres-
sure from the center-of-mass). To achieve these ratios the rods must
have either the specified value of L or, if L is limited to 100 ft, the

indicated mass, m, must be used to load the tips of the rods.

Table 2

STEADY-STATE YAW ERROR DUE TO RADIATION PRESSURE TORQUES
(6000 mile orbit)

Bpgg/B8 | L m Iy | (M) /59
(rag/ft) | (ft) (slugs) (slug-fte) (1b-£t/rad)
1 105 0 367 3.15 x 1o"6
1 100 ~0 320 3 x 10'6
0.1 332 0 11,700 | 9.96 x 10°°
0.1 100 1.2k 3,50 | 3 x 107°
0.01 1050 ) 370,000 3.15 x 1075
0.0l 100 13.5 35,000 3x 1o'h
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The first row of Table 2 indicates that if B, 1s 0.1 rad,
then a Ad of 0.1 ft will require rod lengths of 105 ft. If the Ad
is 1 ft, then to achieve a Scpss of 0.1 rad requires rods 332 ft long
or, alternately, 100 ft rods loaded at the tips with 1.24 slugs,
i.e., about 40 1b. If the longer rods are used, with m = O, then
the pitch moment of inertia is 11,700 slug ft°, and the disturbing
torque due to radiation pressure is approximately 1072 lb-ft. With
tip loading, shorter rods may be used thus reducing the radiation
pressure torques and as a consequence Iyp for a given yaw error.

With no loading of the tips, the rod lengths vary from about
100 to 1000 ft. Although rods 300 to 1000 ft in overall length
are quite feasible, the thermal bending of the longer rods is a

serious problem. (7,12)

By restricting the overall length of the
rods to 100 ft the bending problem can be alleviated, so that a Ad
of 1 ft or less should be possible. Thus the fourth line of Table
2, with tip loading, indicetes the more feasible design.

If a synchronous communication satellite is desired, the yaw
stabilization problem is much more severe. With overall rod lengths
restricted to 100 ft, the radiation pressure torque from Table 2
is 3 x 1070 1b-ft, independent of orbit altitude. However, syn-
chronous orbits would most likely be confined to the earth's equa~
torial plane, resulting in a reduction of the above number to ap-
proximately 1.2 x 10"% 1b-ft. With a disturbance of this magnitude,
and with &,ss/Ad equal to 0.1, the required mass for loading is

10.05 slugs, or over 320 lb:
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Furthermore, station-keeping would probably be required, introducing
another source of disturbance.(lS) Unless thrust levels are limited
to 1070 to 1070 1b, yaw instability could be a serious problem.

The lack of stiffness about the yaw axis, due to the particular
parameters of Table 1, leads to large weight penalties for the syn-
chronous case. Thus it would appear to be desirable to alter the in-
ertia ratios of Table 1 so that the yaw response is improved. For
small constant disturbances, the steady-state yaw, pitch and roll

angles are

(M)
= XD
5¢SS éi (Iyp - Izp)
. )
B 382 (1,5 - L)
(M)
8B__ = 2
Bss héi (Iyp - pr)

If the pitch and yaw errors are arbltrarily set equal, then for equal

disturbing torques I_ =4I -31
yP zp xp

and

_ 3 _ 3
B s = 15 % = TG g5

Thus if the pitch and yaw errors are satisfactory the roll response
is more than adequate, for the same disturbance.
For the above conditions, the limiting inertia ratios which are
ical ible are (I /I al to 1. da I
physically possible ( yp/ o o 75 an (pr/ op) el

to 0.75. However these ratios correspond to a planar mass distribution
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and thus would not pemit the damper-rod to be skewed with respect to
the body. By shifting the ratios such that (I yp/Izp) equals 1.666
and (I xp/Izp) equals 0.778, a three-dimensional mass distribution is
assured and thus one rod can still damp all three rotational modes.
With this particular set of inertia ratios the pitch moment of
inertia required for synchronous orbits, with the same (M) xp/&ps .
as before, is 5680 slug-fte. The mass required for loading the tips
of the 100 ft rods is now spproximately 2.15 slugs or 70 lb.
Although the response to constant yaw torques has been markedly
improved, the transient response has undoubtedly been degraded. The
preceding example merely demonstrates one possible trade-off between
the transient and forced responses. For many applications large yaw
errors are of little importance. However if station keeping is re-

quired, then three-axis stabilization is necessary.



-26-

Appendix A

THE ROTATIONAL EQUATIONS OF MOTION

In terms of the principal axes, Euler's equations of motion for

the body are:

iy -y w, R = (I“ (M"* P(E )@

. M M M
‘"y'“’z“*ny=<'i‘y‘>¢+<f§>dr+(-f§)D (b) (1)

bonoan-(2) (P +(F) @

The equations pertaining to the damper-rod can be written in the seame

manner.

M M
b wy o R m(32) (D) (R @

M M M
oy = Wy W Ryl=<_1ﬁ >G+<iﬁ>b+<-i§>D (v) (2)

cug = (320 () (R ©

In Eqgs. (1,a-c), the torques which act about the x y z axes are M,

My, and Mz, respectively. The subscript G refers to torques arising
from the gravitational gradient; dr refers to those torques spplied to
the body by the damper-rod, and D refers to arbitrary disturbing torques.
The varisbles w,, 0, W, are the components of the bodies' instantaneous
angular velocity with respect to inertial space. Finally the moment-

of-inertia ratios are defined as follows:
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R, = (Iy'Iz) / I (a)
R, = (1,-1) / I, (v) (3)
R, = (Ix-Iy) /1, (c)

The same definitions apply to the corresponding tems of Egs. (2,a-c),
with the exception that the subscript dr is replaced by b, indicating
torques acting on the damper-rod due to the bedy.

At this point it is convenient to introduce the fact that the rod

is constrained to rotate about the ¥y axis., Thus, from Fig. 3

°x1‘(°y3m91‘“z°°8°1)°°392+°‘x81n°2 (a)
myl--,')2+myeosp1+mzsinpl (v) (&)
w,, = & COS p, - (my sin p, - w, cos pl) sin p, (c)

By introducing Eqs. (l4a) and (4c) into Egs. (2a) and (2c), respectively,
the constraint torques, (Hxl)b and (uzl)b can be expressed in terms of
the gradient torques acting on the rod, the angular motion of the body,
and the angle p,. The form of (Myl)b depends upon the manner in which
the body and demper-rod are coupled together. If a linear spring-

dashpot mechanism is used, then the torque about ¥y» due to the body is

(Myl >b =C Pyt P (5)
The reaction torques, due to the demper-rod, which act en the
body are, from Fig. 3

(Mx)dr = - (Mxl)b sin 92 - (MZl)b cos 92 (8.) (6)
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(My)d.r = - (c2 Py + ¢ 52) cos p, + (le)b sin p, sin p;
- (), os p, 10 p, (b)
(M) gp = = (M;4), sin p, cos p; + (M ,), cos p, cos p; (6)
- (cp pp + ¢y Bp) sin py (c)

The substitution of Egs. (6,a~c) into Eqs. (1l,a-c) ylelds another set
of expressions for the unknown constraint torques, (M xl)b and (le)b'
By eliminating &’x ’ {uy s and Jaz between the two sets of censtraint

torque equatiens, (M xl)b and (M can each be expressed in temms of

zl)b
the variables Wy s uxy ’ W, 52 yQ , B, 0, and Py Thus, these two
equations of constraint replace Egs. (2,a) and (2,c).

In the design under study, the damper-rod has a negligible mo-
ment-of-inertia about X, 88 compared to those moments about Yy Zys
or any of the body axes. The damper-rod is also symmetric about Xy

thus
I,=0 (a)
(N
Iy =1, =T (v)

Under these conditions Eq. (2a) does not exist, and the only constraint

torque that can act is (M As a result of the simplifying as-

*
zl)b'
sumption of Eqs. (7,a~b) the equations pertaining to the damper-rod

*Tis is true unless |p,|is limited to some maximum value. If
such is the case, a constraint torque about y, can exist.




motion are
M c c
. 1 2 1 .
gy -y mg = () 4y i b (a) (8)
y1 = 21 ¥x1 Tor 6 o2 T T P2
(le\ 1 '”y"’szws"a"”z“nysmplsmpz
Idr/b 1+Al
*w @ R, o8 p) sinp, +uy wy
c I I
1l . ar ar
+4=— p.( = =« =— )sin cos p, sin p (v)
I, 2(1y I Py 1 >

-p2(wxsinp2+wysinplcospa-mzcosplcospa)

c I I M

2 dr\ x
+ = D —— - — sin cos p, sin p +<—> cosp2
T 2<1y I Py 1 2 I, ¢

M M M
(XD (L} -(_z_l.\
<I e T AN SN Py sla e, =T

Yy G dar ° G
M M M
X g + —5—\ ccs sin
+ <-—-—> coSs p, - ( > sin sin p ( P p2
Ix D Pl Iy D P 2 Iz /D
M
( pA R \
ar °D
where
I I I
_ ‘ar 2 . 2 2
Al—-I-x— cos p2+I sin- p, sin pl+I sin P, COE Py
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In a previous RAND Memorandum, expressions have been derived for
the gravitational gradient torques which act upon a rigid body with an

arbitrary mass distribution.(t3)

Utilizing the notation of this Memo-
randum the gradient torques in Egs. (1,a~-c) and Eqs. (8,a-b) have the

folloving foxm:

38, T
0o "B
(M) = - w3 I e 8y 8y (a)
2
g r
o 'E
(“y)c; = - 3 Iy Ry a_ &, (v)
2
38, Tg
M) = - 3 I,R, 8 8 (¢) (9)
2
380 rIi:
M= -3 Tar % % (a)
2
g r
o B
M,1)g = 3 far 1% ()

where

a = cos @ cos B
ay=sinasin:p-cosasinacoscp

az-sinacos<p+cosasi.nﬁsin:p

The parameters a1’ ayl, and a  can be defined in tems of a, B, o,
Py and Poe Considering Figs. 2 and 3 the following relationships can

be deduced

oosalcosalssinpacosscosa-cospacos (pl+cp) sin a

- cos p, sin (pl + o) sin B cos (a) (10)
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sina) sin @ - cos o) sin B; s g = sin (p + ¢) sin

- cos (p, + ) sinp cos @ (v) (10)
sin o) cOs @ + c0s @; sin B sin g, = COS p, CO5 @ CO8 B
+ sin p, sina cos (p) + ¢) + &in p, cos @ sin B sin (p) + @) (e

Finally the relationship between the rates of change of the
orientation sngles and the body angular rates must be obtained. The
angular velocity of the local horizontal coordinates with respect to

the inertial axes can be determined from Fig. 1.

wisésiny-v.i(eosiosiny+sini°sinacosy) (a)
széoosy-ri(sin i, sin @ sin vy - cos i, cos v) (v) (11)
mk=§+isini°cose (c)

The body angular rates, projected into the i j k axes, are

wbi=u5‘cosacoss+my(sinasin¢-eosacoscpsinﬁ)

+uw, (sin @ cos ¢ + cos @ sin g sin B) (a)
mbj=mxsina+mycosaeosg-w2008381ncp (v) (12)
‘“u;"“’xsmacosﬁ*'”y (cos @ sin @ - sin @ sin B cos o)

+mz (cosacos Q- sinasinﬂsincp) (c)

Since the vector sum of g2 me and Wy is the total angular velocity

of the body as seen in the local horizontal coordinates, the following
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relationships must hold. (See Fig. 2.)

mbiami+c'pcosaoosa+ésina (a)
%3"”3*5”5’“"5 (v) (13)
mu:-mk-o-écosa-&oosasina (c)

From Eqs. (13,a-c), the rates-of-change of the body orientation angles

are

a-mbd-wj-tans[(mbi-wi)eosa-(mbk-mk)sina] (a)

B = (‘“bi' w,) sin a + (“’hk" mk) cos (v) (14)
6--0-0-:—5 [(wbi-mi) o8 a - (w, - w) sina] (c)

The rotational motion of the body, demper-rod combination is de-
scribed by eight nonlinear, firsteorder differential equations, Egs.
(1,a~-c), Eq. (4,v), Eq. (8,a), Eqs. (14,a~c), and by one constraint
equation, Eq. (8,b). In these nine equations, the variables r, @, y
and ¥ arise from the orbital motion, and are known functions of time.
(See Appendix B.) The influence of disturbing torques which are known
functions of time can be studied by including the D terms.

In any practical design the possibility would exist that the
maxXimm value of s might be limited by the body structure. The actual
interaction of the damper-rod with the structure is a very complicated
affair. For the purposes of this study, a "hard”" limit will be as-
sumed., ‘This means that the damper-rod and structure are completely
inelastic., At the instant of impact, there is a discontimwus changé

in the angular rates of the rod and the body. However, the total
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angular mementum of the rod and the body must be conserved. Since
the orientation angles are continuous in value before and after con-

tact, each component of angular momentum in body axes must be invar-

ient. Thus
(T o + Tgp 0y 05 pp), = (L m + I w) cos p))  (a)
(Iy L Iy 0,y sinp, sinpy + I Wy cos pl)+ = (v) (15)
(Iy W, - Iy @,y 5in p, sinp, + I Wy COS pl)_
(Iz w, + I w,, sinp, cos p, + I, Wy sin pl)+ = (c)
(Iz w, + I, w, sin p, cos py + Iy wyy sin pl)_

The subscript, +, indicates that the quantities in the bracket
exist at an infinitesimal time after contact, while the subscript, -,
refers to quantities which exist at an infinitesimal time prior to
contact. At impact ‘32 is zero and therefore myl(+) and z1(+) are
functions of wx(+), my(+) and mz(+). Thus Eqgs. (15,a~c) can be solved
to obtain the body angular rates which exist at the instant after the
rod and the body come into contact.

Once the new initial conditions have been found, it is necessary
to determmine whether or not the damper-rod stays on the limit or im-
mediately drops away. From Fig. 3 it can be seen that if the body
exerts a constraint torque, (Myl)b’ upon the rod, the sign of (Myl)b
and of p, mst be identical. Also, vhen (Myl)b exists as a constraint

torque, the damper-rod, body combination behaves as single rigid body.
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Thus the differential equation, Eq. (8,a) is replaced by an equation
of constraint. Expressions for the two constraint torques, (le)b

and (Myl)b can be found by following the procedure outlined previously
in this Appendix.

(I;_ir ] i@_r>
M M M cos p, sin p, sin p b Iy
zl zl yi 1 1 2 z

dr b dr bo dr b 1

M c M I I
1 2 1 2zl ar dr
R - —pn + —— sin p, cos p sinp(—-—-—-)
( dr)b Idr 2 "1+ Aas -<Idr>b 1 1 2 IZ Iy
(16)
COB Py Wy W, Ry-i-sin p1"“x""sz"mzlmxl
(v)

<
(3), () ()

D D D
<le> < le)
vhere is the expression for prior to the limit,
Tar/vo Tar/v
given bty Eq. (8,b), and where

I 1
= dr 2 ar 2
A2 T——y cos pl + I---z sin pl

In Egs. (16,a~b) 52 is zero and p, 1s a constant, corresponding to
plus or mimis the maximum permissible value of the angle.
Thus when the demper-rod and the body come into contact, the

first step is to determine the new body angular rates from Egs. (15,a~c).
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Next Egs. (16,a~b) are solved for (Mz and (M

1)+ Ly IF (M),
has the same sign as p,, then Egs. (1,a-c), Eqs. (14,a-d), and Egs.

(16,a~b) describe the combined body, damper-rod angular motion where
M)y = - (), co8 b, (2)
(My)dr = - (Myl)b cos py + (M,,), sin p) sin p, - ¢, p, s py (D) (17)
(M,) gy = = (M1),, cos p) 8in p, = (M), sin p) - c; py 50 Py (c)

When the magnitude of (Myl)b goes to zero, the rod leaves the limit
and Egs. (1,a-c), Egs. (6,e~c), Eq. (4,b), Eqs. (8,a~b) and Egs. (1%,
a~c) prevail again. There is no discentimity in the angular rates
vhen limiting ends.

If the solution of Egs. (16,a-c) yilelds a value for (Myl)b-i- of
opposite sign to that of Por then the conditions immediately after
contact are such that the rod and body separate. Under these cir-
cumstances the solutions of the equations of motion are obtained in
the same manner as was done before the limit. The only effect of the
contact between the damper-rod and the body is the discontimous change
in the angular rates.
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Appendix B

THE TRANSLATIONAL EQUATIONS OF MOTION

The center-of-mass motion of the body, damper-rod combination is
described by the variables, r, 8, y and ¥. (See Fig. 1.) Since only
three variables are required to specify the position of the vehicle,
one of the above quantities is redundant. Expressed in the local

horizontal coordinate system, the three translational equations of

motion are
4 r2 1.5d, 8 r
o 2 2 o E * 2 0o 'E . .
r- r(wj + !ﬂk) = - —5t n [3(31n y cos i
r r
< . 2
+ cos y sin 6 sin 10) -l] (a)
L
3J2 & g

rw.-nnimk+2rwj=-

; sin i cos 6(sin vy cos i (v) (18)

r

+ cos y sin @ sin io)

L
3J, &, Tg

ﬁﬁ:*“”i"’j+2i"’1;=' - (cosiocosy

- sin i sin @ sin v)(sin vy cos i, + cos y sin 1 sin e) (c)

The parameter J, in Egs. (18,a~c) is a non-dimensional constant of
the order of 10'3, and is a measure of the earth's oblateness. The
angular rates, w,, y and w  are defined by Egs. (11,a~c).

If the earth were not oblate, the solutions of Egs. (18,a-c) could
readily be found, and would be the well-known relationships of Kepler.(l6)
The orbit, which is in general an ellipse, lies in a plane fixed in

inertial space. Thus, the only variables required are @ and r, since
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the orientation of the orbital plane with respect to the inertial axes
is specified by the constants, io and *o' For the unperturbed case,

Egs. (18,a-c) reduce to the following:

2
w .o BT
r-r92+-°—2§=o (a)
d (19)
3+%é=o (b)

Equation (19,b) integrates once directly, and then with a little menip-

ulation, r can be found as e function of g.

r8=C (2)
%a%c [l+ecos (e-e)] (v) (20)
2
§ = éc [1 + e cos (9-3)] (c)

where e is the eccentricity, ¢ is the argument of perigee, and

2
& T
1 _ " "E
;c ) 02 (e)
(21)
22
g =G0 B (b)
c 3
c

The integration of Eq. (20,c) yields 6 as a function of time.
When J2 is included as a perturbing disturbance, the equations

of motion are

2
28, Tg
3

4
1.5J.¢g r 5
) &r - 2rg bw, = §°E(3sineesini-1)
r

.5.1'- (.92'*' J o]

r

(a) (22)




L
l.5J. 8. r
ld 2 M 2> "E . 2, .
-I-'-&(r &n'j+2r96r) 5 sin i sin 2 @
1.5J, g ru
l1d 2 . ‘"2 % "E . . .
-I-.-‘-ﬁ(r Emk)+r95mi=- 5 sin 2i_ sin @
where
&”iassy-avsmlosine
bak=a§+8i'sini°cose

(v) (22)

(c)

(a)
(b) (23)
(c)

The 5 indicates that the term in question is a differential quantity.

An exsmination of Egs.(22,a-c) reveals that the first two equations

are coupled and independent of the third.

Let us first consider Egs. (22,a~b). Since r is known explicitly

as a function of 9§, it is convenient to change the independent variable

from t to @ by means of Eq. (20,a). Equation (22,b) can be integrated

once to yleld an expression for bduw,.

J
1.5J, & rh
C 1 ‘“ "2 'E 2 (cosao
&DJ’-2;2511+-;§ 85C + rcc sinio ——-2

e e
+§oose+goos3e>
where 8C is a constant of integration and

&r
Sucr—

e =0

(24)
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By employing Eq. (2k), ﬁwj may be eliminated from Eq. (22,a)

L
1.5 J2 g, rE

1 + he cos @ 3 2
du’ + Bu = r—sini-l
1+ecose> rc(:2 L2 (o)
2
sini
T 2
- 5 cos2a+<-gsinio-l>ecose
-%sinzio cos 3@ +£2_§ (25)

vhere the prime notation indicates differentiation with respect to

8. Since the unperturbed solutions provide the necessary constants
of integration, only a particular solution of Eq. (25) is required.
Neglecting terms in e2, a particular solution which satisfies Eq. (25)

is

ki 2
1.5 J b of sin’i
28 e r1,/3 .2 o
Su = rcét [-3-<-2-sinio-l>+—6—- cos 28
c
2
e sin'i
* —— °cos3eJ (26)
wvhere
J. & rh
2oc__"2% E(3 .02 .3 (27)
C rcc2 (2 o >

The substitution of Egs. (26), (27) and (23,b) into Eq. (24) yields

1.5J, ¢ rll»
56=-£2-(l+ecose)2 2°E[<-3-sin21-l>

r r 02 °
c c
e singio sineio .
- —%—— ¢©05 § -~ —p— CO§ 29]-0-5*008 i (28)

We must now consider the solution of Eq. (22,c). Again using

@ as the independent variable and utilizing Eqs. (23,a) and (23,c),



we find

6-y”+'6y+6#”sini°oose-25v'siniosinaa

L
1.5 J2 go rE
- sin 2i_ sin @ (1 + e cos @) (29)
2 [o]
rcC

Since there is one equation and two variables, one of the two variables

msy be specified. Thus

k
l1.5J. 8. r
oy’ = 272 °© £ s i (2)
rcC
. (30)
5% =0 (b)
The substitution of Egs. (30,8~b) into Eq. (29) yields
1.54J 5 go rlE"
By + By = - > sin 2i e sin 28 (31)
2r C °
C
An examination of Egs. (30,a-b) and (31) indicates that without
eccentricity, the out-of-plane motion is zero. It should be noted
that Eq. (30,a) is not the standard definition of the orbital re-
gression rate.(ls) Thus
in
. l.5J_ g T
BY = § © E os i (1L + e cos 6)2 (a)
rcC
(32)
1.5 J2 g r;;
By = g sin 21 e sin 20 (v)
6 r.C

By introducing Eq. (32,2) into Eq. (28) and simplifying, an expres-

sion for Gé can be found.
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4
l.5J.g r
89 = - 2°E(l+eoose)2r<—5-sin2i-2>
3 N2 o
r’C
c
.2, . 2,
e sin'i sini
- —_—20 cos @ - 000529_1
2 6 J (33)°
The perturbed orbital variables as a function of ¢ are thus
2 2
c l1.5Jd., r
r(e,J,) = — = + g B l—% sinQio - %
gorE(l+eocose) rc(1+ecosa)
sin'i e sin'i
+ —g— cos 20 + 15 cos 39] (a)
2
. (go r@ s 15 Is éc rg >
9(9,J2) = — (1 + e, cos )" + s (1L + e cos @) |—2
Co r,
. 2, . 2
5 > e sin 1o sin io
--ésini°+-—2—--cose+—-6—— cosee:! (v) (34)
1.5 J2 rg
by = ———>— e sin 21 sin 26 (e)
ér
c
.« 2
1.5J,86_ r
M 2 '¢c'E . 2
oy = z cos i (1 + e cos @) (a)

*
where Co and e, are new constants of integration. Since @ is a known

function of time, the perturbed variables, Eqs. (34,a-d), can be found

*Since ¢ is zero, i'(e,Jz) must be zero at 6 equal to zero.
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as functions of time. The integration of Eq. (3k,b) gives 6(6,J,)
as a function of time. The difference between @ and e(e,Ja) is due to

the shift of perigee with time.
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Appendix C
CONDITIONS FOR CORTINUOUS LIMITING

It is possible, with certain initial conditions, for the demper-
rod to remain at the limiting value of Py In order to demonstrate
this behavior, let us assume that the damper-rod is on the limit. Un-
der these circumstances the damper-rod and body act as a single rigid
body. Due to the simple mass distribution of the rod, it is convenient
to express the moments and cross-products of inertia with respect to

the x y z axes. Thus

Ibrx = Ix + Idr cossz (a)
Ibry = Iy + Idr(coszpl + sin2pl sinsz) (v)
L., =1,+ Idr(sinzpl + cosapl sinapL) (c)

(35)
(Jbr)n, =1§ sin 2p, sin py I . (a)
(Jbr)yz = - -é- sin 2p; cosepL Iir (e)
(Jbr)zx = - -]25 sin 2p; cos py I, (£)

where Py is the limit value of Py and the subscript br refers to the
combination of the body and the rod.
A set of central principal axes, xp, Y. zp, are related to x,

P
yandzbytheanglesnl, T]2andT\3.

-x . = " —x-i
P
= 6
¥p A y (36)
z z
L p_ L o L .
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where - -

o1 22 23

31 32 33

and

a)) = cos Ty cos T,
g&p = S0 My
al3 = - sin T, cos ng

85y = sin T sin n3 - cos “1 cos n3 sin ﬂ2

8y = cos ﬂ2 cos n3

a23 = COS nl sin n3 + sin nl sin n2 cos “3

a3l = sin T, cos n3 + cos T, sin Mo sin n3

a32 = - sin n3 cos n2

a33 = COSs “1 cos n3 -~ sin nl sin Mo sin n3

To find the angles nl, U and n3, one can meke use of the fact that

Jx y? Jy 2 and JZ x &re, by the definition of principal axes, zero.

PD PP PP
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For example

pr Yy dm = .erm ;rx cos T, cos T, +y sin 1, (37)

z sin T, cos 'ﬂ2] [-x (sin T, sin 113 - cos T, cos 'n3 sin n2)
* ¥ cos T, cos n3 + z (cos T13 cos Ty - sin M; sin 7, sin 1‘]3)]!

=J =0
X
o”p

The eXpansion and simplification of the terms within the brackets of

Eq. (37) leads to the following expression:

(Ibrz -~ Lorx) fl(nl,2,3) + (Ibrx - Ibry) f2(n1,2’3) ()

* Gopdyy T3(My 2 3) + By, BNy 5 3) + (T £5(My 5 3) =0

where the f's are various combinations of the trigonometric functions
of Ty 'n2 and 'n3. Two more equations, similar in form, can be obtained

by equating Jy z and JZ x to zero. Thus there are three equations

PP PP
in termms of functions of the three unknown angles.
Once the T's have been found, the principal moments of inertia
of the rod, body combination can be determined from the equation of

the momental ellipsoid. For example

Lo = Tor 215 * Tory %15 * Lore 413 = 2%pr)y; %0 o3

(39)
= 2Ty By 8137 ATy By Bp
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where the a's are the elements of the first row of the matrix, A. The
values of Iyp and Izp can be found in a similar manner.

For this body, the motion asbout yp s the pitch axis, is independent
of the roll-yaw motion. Thus let us assume that the initiel conditions
are such thet only the pitch mode is excited. Restricting the center-
of-mass motion to a circular orbit without external disturbances, the

pitch equation of motion is
o0 . 2
+ 1. R in =
a, 56, R, sin 2, =0 (40)
where
The orientation angle, ap, corresponds to @ of Fig. 2 and it is as-

sumed that Bp and (pp are zero. By utilizing ap es the independent vaxr-

iable Eq. (40) can be integrated once.

= éc (1 + ‘/(n-l)e + 1.5 Ryp [cos azp - cos azp(o) ]) (41)

where the initial pitch rate is defined as
= nf "
w, (0) = ng, (k2)

If n is negative, the negative sign of the radical of Eq. (l4l) must be
used. It can be easily shown that, for positive values of W (0), n
must be equal to or larger than 2.73 for unidirectional rotation to

occur, If "’yp (0) is negative then n must be equal to or less than -0.73.*

¥In obtaining the asbove values of n, it is assumed that the max-
imm velue of RYP is 1.
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Otherwise, oscillatory motion about the local vertical will take place.

When the damper-rod is on the limit, an expression for (Myl/Idr)b

can be deduced from Egs. (4,a-c) and Eq. (2b).

M 1 . . c2 M 1 (43)
2= =@ _Ccos p, + sin - m—— - = 3
1. y 1 T ML T/ G

- [a, sin o) - w, 08 p) c0s o+, sin p | [w, cos py

- (my sin p; - w, cos pl) sin P :]

Since the total angular rate of the rod, body combination is wyp s then W, 5
and w, are functions of w \p* Thus if ""yp is non-oscillstory end suf-

ficiently large, (M must exist due to the cross-product term of

yl)b
Eq. (43). This so-called gyroscopic temm will not reverse sign as
will the gradient-torques and the angular accelerations, &’y and @, .
The constraint torque will oscillate in magnitude but will not reverse
sign if the parameter, n, of Eq. (42) is large enough. As might be ex-
pected, the required value of n for continmuous limiting depends upon
Py, but must always, of course, exceed 2.73 or be less than -0.73 depend-
ing upon the sign of ww(o).

In terms of the x y z axes, @ has the following components:

B = 8y Yy (a)
a, = spu () ()

W, = 8w (c)
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where the a's are the elements of the second row of A or of the second

column of A™Y. The angular accelerations are

° 3 - '2 -
W, = 8,y = = 1.5 8 Ryp sm2ap &5 (a)
. (45)
wz=my_P323=-l.5écRyps1n2apa23 (o)
Finally the relationship between ap and . a.y and a, must be estab-
lished so that the gradient torque, (Myl) g’ °en be evaluated.
s &y = 8y A +te, 8 +age (a)
0 =
Bo1 Byt 8pp By * 853 3 () (46)
sin a, = 83 8 + 83 8 +8gy 8, (c)
From Egs. (10,a~c) and the definitions of 8y 8 and a_, Eq. (9):
8 = 8 sinp + 8 sinp) cos p - &, cos p) cos p (a)
(¥7)
84 = &, cospL-ay sin py sinr;‘I_'+a.z cos py sian (v)

The solution of Egs. (46,a~c) yields the direction cosines, 8yr 8
end a_ as a function of the variable 0y Equation (47,a~b) can then
be used to find (Myl/Idr)G as a function of a,e

For a given value of n and p,, (Myl/Idr)b can be found as a func-
tion of a, from Eq. (43). Thus the minimm value of n which will re-

sult in continuous limiting can be determined for a given limit angle, o
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The procedure outlined in the preceding paragraphs has been
followed for the design under consideration. Since the detemination
of the M's and pr, Iyp and Izp is a tedious process, only one limit
angle was considered: pequal to +30°. The solutions of Egs. (43)
and (41) indicate that, for positive pitch rates, an n of %.121 is
sufficient for continuous limiting. This is true for the damper-rod
at + 30° or - 300 initially. For negative pitch rates an n of ~5.99
is required to limit continuously at + 300.

For small values of |pL|, the gyroscopic term of Eq. (43) ap-
proaches zero. Thus for (Myl)b to exist, wyp must be very large.
The same sort of behavior occurs as [pL| approaches 90°. Thus a

minimm initial pitch rate must exist for which continuous limiting

will prevail.



Appendix D
RADTATION PRESSURE TORQUES

It is necessary to select a nominsl vehlcle design before the
effects of radiation pressure torques can be evaluated., The assump-
tion is made that the main body consists of a "small" sphere at the
center of an "X." The X is formed by rods which have diameters of 0.1
ft, and tip to tip lengths of L. Located at the tips of the rods are

four equal masses. The moments of inertia of the body are

m
Ix-m(% sinL)2+-61-‘(L sin [_)2 (a)
2 m
Iy-mll;;—+-5-r1,2 , (b) (48)
I L 2 " 2
z--xn(EcosL.) +-6-(LcosL) (c)

vhere m is the total tip mass, m, is the mass of one rod and 2/ is the
acute angle of the X. The moment of inertia of the "small" sphere has
been neglected. If it is assumed that the rods are Be Cu, then, based

on Ref. 12

-2
mr';‘ -6-—’-3:?{'%—- L (slugs)

From Table 1, and Egs. (48,a-c)

(&/Iz) = 0.12 = tan’’

Thus the angle 2L is approximately 38.20.
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For small disturbances, the yaw response to a constant torque is

()
x
5. = 5 (49)
% 8 (1 -1)
c ‘'yp ~ “zp
At en altitude of 6000 mi, and assuing @ circular orbit, §° is
approximately 10'7(rad/sec)2. The principal moments of inertia of
the damper-rod, body combination are
Im = 002 IZ (a)
Iyp = 1151, (v) (50)
Ip=1.051, (c)
Finally (MD)x for the worst case is
= - 7
(M.D)x P, AAd=1.5x10 (0.2L) Ad (51)
vhere the area of one rod is 0.1lL, Ad is the separation between the
center-of-pressure and the center-of-mass, and 1.5 x 1077 1s the
average radiation pressure, P_, in lb/ﬁ'.g. The area of the damper-
rod has been neglected.
Thus, from Egs. (48), (50) and (51)
855  1.1x 10"
805m L + L

Equation (52) has been solved for L as a function of (&pss/Ad) , with

m = 0, and for m as a function of (5¢85/Ad) with L = 100 ft. (See
Table 2.)
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Appendix E

SOME REPRESENTATIVE DIGITAL COMPUTER SOLUTIONS

In this Appendix plots of a, B, @, and p, &s functions of the
orbital period are presented. The particular initial conditions, or-
bital forcing, or extermal disturbances which pertain to a given case
are indicated below. All unspecified conditions are standard. (See
pg. 11, Section III)

Linearized and Exact Solutions

Fig. 4, a(0) = 10°
Transient Response to Attitude Errors

Fig. 5 a(0) = 4% p =2 30°

Fig. 6 a(0) = - 45% p= = 30°

Fig. 7 a(0) = B(0) = sp(0) = 45°; p = + 90°
Fig. 8  «(0) = B(0) = ap(0) = - 45% p =+ 30°
Fig. 9 a(0) = B(0) = sg(0) = 45°; p = & 30°

Transient Response to Yaw Angular Rate Errors
= A - b3 o
Fig. 10 mxp(O) = wx(O) =58, ; P =+ 30
o . S _ 0
Fig. 11 a(0) = 45 ; wx(O) =508,; p =% 30
Fig. 12 o(0) = - 45° ; w (0) = 58 ; pL=:!:30°
Transient Response to Pitch Angular Rate Errors

Fig. 13 = my(o) cos @ . = mz(o) sin Pgg = 2.56c HEE 30°

o~
O

~
!

Fig. 14 w_(0) = - 0.5 ; pL=:!:30°

Fig. 15 w,_(0) = 38 ; p = + 30°

Fig. 16 o (0) =38, ; o = % 90° (no limit)

Fig. 17 w(0) = - 38_ 5 py = + 30°

Fig. 18 p(0) = - 1.95°; ¢(0) = - 14.1°% p,(0) = 30°




&
P
&
2
e
N

Fig. 19 g(0) =

~—~
(>

~
]

wyp(o) =

-53-

1.95% 9(0) = - 14.1% p,(0) = 30°

h.léc H mx(o) = - o.lhlléc e = 30°

1.95%; (0) = - 14.1° p (0) = 30°

- Géc H mx(o) = - 0.204 x 10-3; o

Forced Response due to Orbital Motion

Fig. 20 e = 0.05 ; pL=i30°

Fig. 21 e = 0.01 ; pL=i:30°

Fig. 22 J

2

(]

30

-3" = H = ©
=1.082x 107 ; i h5°,pL + 30

Fig. 23 e = 0.05; J2 = 1,082 x 10"3,- i = k‘jo; pL =% 30°

Forced Response due to Constant Disturbing Torques
Fig. 2k (MD)yp =
Fig. 25 (Mn)xp =
Fig. 26 (M), =

Forced Response due to

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

NOTE:

If any one of the angles exceeds x radians in magnitude, then = is
subtracted from (or added to) the function and the plot is then con-

tinued from zero.

27
28

29
30

32

(M), =

does not always restart at exactly zero.

108 12t ; o =+ 30°

1078 102t ; p =% 300

1070 1o-1t ; pL=¢3O°

Simusoidal Disturbing Torques

107° sin 8.t -2t 5 p =+ 30°

107® sin bt -t 5 p = £ 30°
= 10" sin 8.t -2t 5 o = 2 30°

1078 sin 28 t 1b-£t ; p = & 30°

10™° sin 20 % 1b-£t ; p, = % 30"

107® sin 26 t 1o-£t ; p = + 30°

Due to the gramularity of the data, the function
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Fig. 4—Linearized and exact solutions
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Alpho and Beta versus
number of orbits
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Fig. 5—Transient response to attitude errors
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Phi and Rho , versus

number of orbits
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Fig. 5 (cont.)
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*See note, p. 53.




Alpha and Beta versus

number of orbits
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Fig. 7—Transient response to attitude errors
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Phi and Rhoy versus

number of orbits
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Fig.8 (cont.)
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Fig.9 (cont.)
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Aipha and Beta versus
number of orbits
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Fig. 10— Transient response to initial yaw angular rate error
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Phi and Rho, versus
number of orbits

Fig. 10 (cont.)
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Alpha and Beta versus
number of orbits

Fig. 11 —Transient response to initial yaw angular rate error
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Alpha and Beta versus
number of orbits
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Fig. 12— Transient response to initial yaw angular rate error
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Alpha and Beta versus

number of orbits
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Fig. 13— Transient response to initial pitch anqular rate error
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Phi and Rhoz versus

number of orbits
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Phi and Rhop versus

number of orbits
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Fig.15 — Transient response to initial pitch angular rate error
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Alpha and Beta versus
number of orbits
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Fig.17 — Transient response to initial pitch angular rate error




-81-

Phi and Rho2 versus
number of orbits
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Fig. 18 — Transient response to initial pitch angular rate error
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Phi and Rho, versus
number of orbits
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Fig. 26 — Forced response due to constant disturbing torques
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Fig. 27 — Forced response due to sinusoidal disturbing torques
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Fig. 30 — Forced response due to sinusoidal disturbing torques
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Fig. 32 — Forced response due to sinusoidal disturbing torques
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